skip to main content


Search for: All records

Creators/Authors contains: "de Wet, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century.

     
    more » « less
  2. Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al.,Nat. Clim. Chang.(3), 673–677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al.,Philos. Trans. A Math. Phys. Eng. Sci.(371), 20130097 (2013) and Post et al.,Sci.Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic—documented here by multiple proxies—likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.

     
    more » « less